

CarbonTube: lightweight distributed worker pipeline

[image: _images/f59034cf357f0af674c8d35fbeda4879eaecb144.svg]
 [http://carbontube.readthedocs.io/en/latest/?badge=latest][image: _images/carbontube.svg]
 [https://travis-ci.org/gabrielfalcao/carbontube]
Table of Contents:

	Introduction
	This is NOT a DATA pipeline framework

	Features

	Basic Usage
	Instalation

	Defining Phases

	Running the servers

	Feeding the pipeline with jobs
	in the console

	in python

	Internals Reference
	Servers

	Clients

	Storage Backends

	Utilities

	The command-line client

Introduction

Danger

This project is ENTIRELY EXPERIMENTAL at the
moment. Use at your own will or if you want to contribute
to it

CarbonTube is an easy python DSL for describing phases of execution of a
pipeline.

Even more, the phases can be scaled up independently and spread in a
network.

This is NOT a DATA pipeline framework

This framework allows you to describe workers using a simple DSL.
Each worker produces a given job_type.

A pipeline is a sequence of job types that will be coordinate with any
idle workers that announce their availability.

This gives you the advantage of scaling your infrastructure
horizontally and vertically with very little effort.

Features

	Describe phase workers using python classes and get them running within minutes

	Describe pipelines that can juggle with any available phases

	Easily scale phases individually in a pipeline

	Easily scale pipelines onto clusters

	Empower sys-admins to take quick action and increase the number of
phases on demand, be it with new machines, new docker instances or
even one-off spawned processes.

	On-demand live web interface with live pipeline cluster information

	Redis queue and metrics persistence

Basic Usage

Instalation

pip install carbontube

Defining Phases

import os
import uuid
import hashlib

from carbontube import Phase, Pipeline
from carbontube.storage import RedisStorageBackend

class GenerateFile(Phase):
 job_type = 'generate-file'

 def execute(self, instructions):
 size = instructions.get('size')
 if not size:
 return

 path = '/tmp/example-{0}.disposable'.format(uuid.uuid4())
 data = '\n'.join([str(uuid.uuid4()) for _ in range(size)])
 open(path, 'wb').write(data)
 return {'file_path': path}

class HashFile(Phase):
 job_type = 'calculate-hash'

 def execute(self, instructions):
 if 'file_path' not in instructions:
 return

 file_path = instructions['file_path']
 if not os.path.exists(file_path):
 msg = "Failed to hash file {0}: does not exist".format(file_path)
 self.logger.warning(msg)
 raise RuntimeError(msg)

 data = open(file_path, 'rb').read()
 return {'hash': hashlib.sha1(data).hexdigest(), 'file_path': instructions['file_path']}

class RemoveFile(Phase):
 job_type = 'delete-file'

 def execute(self, instructions):
 path = instructions.get('file_path')
 if path and os.path.exists(path):
 os.unlink(path)
 return {'deleted_path': path}

 raise RuntimeError('file already deleted: {0}'.format(path))

class Example1(Pipeline):
 name = 'example-one'

 phases = [
 GenerateFile,
 RemoveFile
]

 def initialize(self):
 self.backend = RedisStorageBackend(self.name, redis_uri='redis://127.0.0.1:6379')

Running the servers

run the pipeline
carbontube pipeline examples/simple.py example-one \
 --sub-bind=tcp://127.0.0.1:6000 \
 --job-pull=tcp://127.0.0.1:5050

then execute the phases separately, they will bind to random
local tcp ports and announce their address to the pipeline
subscriber
carbontube phase examples/simple.py generate-file \
 --sub-connect=tcp://127.0.0.1:6000
carbontube phase examples/simple.py calculate-hash \
 --sub-connect=tcp://127.0.0.1:6000
carbontube phase examples/simple.py delete-file \
 --sub-connect=tcp://127.0.0.1:6000

Feeding the pipeline with jobs

in the console

carbontube enqueue tcp://127.0.0.1:5050 example1 "{\"size\": 10}"

in python

from carbontube.clients import PipelineClient
client = PipelineClient("tcp://127.0.0.1:5050")
client.connect()

job = {
 'name': 'example1'
 'instructions': {}
}
ok, payload = client.enqueue_job(job)
if ok:
 print "JOB ENQUEUED!"
else:
 print "PIPELINE'S BUFFER IS BUSY, TRY AGAIN LATER"

Internals Reference

Servers

	
class carbontube.servers.Pipeline(name, concurrency=10, backend_class=<class 'carbontube.storage.inmemory.EphemeralStorageBackend'>)

	Pipeline server class

A pipeline must be defined only after you already at least one
Phase.

	
handle_finished_job(job)

	called when a job just finished processing.

When overriding this method make sure to call super() first

	
initialize()

	Initializes the backend.

Subclasses can overload this in order to define their own
backends.

	
on_finished(event)

	called when a job just finished processing. You can override this at will

	
on_started(event)

	called when a job just started processing.

This method is ok to be overriden by subclasses in order to take
action appropriate action.

Clients

	
class carbontube.clients.PipelineClient(address, hwm=10)

	Pipeline client

Has the ability to push jobs to a pipeline server

	
connect()

	connects to the server

	
enqueue_job(data)

	pushes a job to the pipeline.

	Note that the data must be a dictionary with the following

	keys:

	name - the pipeline name

	instructions - a dictionary with instructions for the first phase to execute

	Parameters

	data – the dictionary with the formatted payload.

	Returns

	the payload sent to the server, which contains the job id

EXAMPLE:

>>> from carbontube.clients import PipelineClient

>>> properly_formatted = {
... "name": "example1",
... "instructions": {
... "size": 100",
... },
... }
>>> client = PipelineClient('tcp://127.0.0.1:5050')
>>> client.connect()
>>> ok, payload_sent = client.enqueue_job(properly_formatted)

Storage Backends

	
class carbontube.storage.BaseStorageBackend(name, *args, **kw)

	base class for storage backends

	
connect()

	this method is called by the pipeline once it started to listen on
zmq sockets, so this is also an appropriate time to implement
your own connection to a database in a backend subclass pass

	
consume_job_of_type(job_type)

	dequeues a job for the given type. must return None when no job is
ready.

Make sure to requeue this job in case it could not be fed into
an immediate worker.

	
enqueue_job(job)

	adds the job to its appropriate queue name

	
get_next_available_worker_for_type(job_type)

	randomly picks a workers that is currently available

	
initialize()

	backend-specific constructor. This method must be overriden by subclasses
in order to setup database connections and such

	
register_worker(worker)

	register the worker as available. must return a boolean. True if
the worker was successfully registered, False otherwise

	
unregister_worker(worker)

	unregisters the worker completely, removing it from the roster

	
class carbontube.storage.EphemeralStorageBackend(name, *args, **kw)

	in-memory storage backend. It dies with the process and has no
option for persistence whatsoever. Used only for testing purposes.

	
connect()

	this method is called by the pipeline once it started to listen on
zmq sockets, so this is also an appropriate time to implement
your own connection to a database in a backend subclass pass

	
consume_job_of_type(job_type)

	dequeues a job for the given type. must return None when no job is
ready.

Make sure to requeue this job in case it could not be fed into
an immediate worker.

	
enqueue_job(job)

	adds the job to its appropriate queue name

	
get_next_available_worker_for_type(job_type)

	randomly picks a workers that is currently available

	
initialize()

	backend-specific constructor. This method must be overriden by subclasses
in order to setup database connections and such

	
register_worker(worker)

	register the worker as available. must return a boolean. True if
the worker was successfully registered, False otherwise

	
unregister_worker(worker)

	unregisters the worker completely, removing it from the roster

	
class carbontube.storage.RedisStorageBackend(name, *args, **kw)

	Redis Storage Backend

	
connect()

	this method is called by the pipeline once it started to listen on
zmq sockets, so this is also an appropriate time to implement
your own connection to a database in a backend subclass pass

	
enqueue_job(job, state)

	adds the job to its appropriate queue name

	
get_next_available_worker_for_type(job_type)

	randomly picks a workers that is currently available

	
initialize(redis_uri='redis://', worker_availability_timeout=300)

	backend-specific constructor. This method must be overriden by subclasses
in order to setup database connections and such

	
register_worker(worker)

	register the worker as available. must return a boolean. True if
the worker was successfully registered, False otherwise

	
unregister_worker(worker)

	unregisters the worker completely, removing it from the roster

	
class carbontube.storage.RedisJobStorage(name, *args, **kw)

	
	
connect()

	this method is called by the pipeline once it started to listen on
zmq sockets, so this is also an appropriate time to implement
your own connection to a database in a backend subclass pass

	
initialize(redis_uri='redis://', worker_availability_timeout=300)

	backend-specific constructor. This method must be overriden by subclasses
in order to setup database connections and such

Utilities

	
class carbontube.util.CompressedPickle(*args, **kw)

	Serializes to and from zlib compressed pickle

	
pack(item)

	Must receive a python object and return a safe primitive (dict,
list, int, string, etc).

	
unpack(item)

	must receive a string and return a python object

	
carbontube.util.parse_port(address)

	parses the port from a zmq tcp address

	Parameters

	address – the string of address

	Returns

	an int or None

	
carbontube.util.read_internal_file(path)

	reads an internal file, mostly used for loading lua scripts

	
carbontube.util.sanitize_name(name)

	ensures that a job type or pipeline name are safe for storage and handling.

	Parameters

	name – the string

	Returns

	a safe string

The command-line client

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 carbontube	

 	
 	
 carbontube.clients	

 	
 	
 carbontube.servers	

 	
 	
 carbontube.storage	

 	
 	
 carbontube.util	

Index

 B
 | C
 | E
 | G
 | H
 | I
 | O
 | P
 | R
 | S
 | U

B

 	
 	BaseStorageBackend (class in carbontube.storage)

C

 	
 	carbontube.clients (module)

 	carbontube.servers (module)

 	carbontube.storage (module)

 	carbontube.util (module)

 	CompressedPickle (class in carbontube.util)

 	connect() (carbontube.clients.PipelineClient method)

 	(carbontube.storage.BaseStorageBackend method)

 	(carbontube.storage.EphemeralStorageBackend method)

 	(carbontube.storage.RedisJobStorage method)

 	(carbontube.storage.RedisStorageBackend method)

 	
 	consume_job_of_type() (carbontube.storage.BaseStorageBackend method)

 	(carbontube.storage.EphemeralStorageBackend method)

E

 	
 	enqueue_job() (carbontube.clients.PipelineClient method)

 	(carbontube.storage.BaseStorageBackend method)

 	(carbontube.storage.EphemeralStorageBackend method)

 	(carbontube.storage.RedisStorageBackend method)

 	
 	EphemeralStorageBackend (class in carbontube.storage)

G

 	
 	get_next_available_worker_for_type() (carbontube.storage.BaseStorageBackend method)

 	(carbontube.storage.EphemeralStorageBackend method)

 	(carbontube.storage.RedisStorageBackend method)

H

 	
 	handle_finished_job() (carbontube.servers.Pipeline method)

I

 	
 	initialize() (carbontube.servers.Pipeline method)

 	(carbontube.storage.BaseStorageBackend method)

 	(carbontube.storage.EphemeralStorageBackend method)

 	(carbontube.storage.RedisJobStorage method)

 	(carbontube.storage.RedisStorageBackend method)

O

 	
 	on_finished() (carbontube.servers.Pipeline method)

 	
 	on_started() (carbontube.servers.Pipeline method)

P

 	
 	pack() (carbontube.util.CompressedPickle method)

 	parse_port() (in module carbontube.util)

 	
 	Pipeline (class in carbontube.servers)

 	PipelineClient (class in carbontube.clients)

R

 	
 	read_internal_file() (in module carbontube.util)

 	RedisJobStorage (class in carbontube.storage)

 	RedisStorageBackend (class in carbontube.storage)

 	
 	register_worker() (carbontube.storage.BaseStorageBackend method)

 	(carbontube.storage.EphemeralStorageBackend method)

 	(carbontube.storage.RedisStorageBackend method)

S

 	
 	sanitize_name() (in module carbontube.util)

U

 	
 	unpack() (carbontube.util.CompressedPickle method)

 	unregister_worker() (carbontube.storage.BaseStorageBackend method)

 	(carbontube.storage.EphemeralStorageBackend method)

 	(carbontube.storage.RedisStorageBackend method)

 _static/comment-bright.png

_static/comment-close.png

_static/cloud-diagram.png
Pipeline Manager

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/icon-brick.png

_static/ajax-loader.gif

_static/icon-fireball.png

nav.xhtml

 Table of Contents

 		
 CarbonTube: lightweight distributed worker pipeline

 		
 Introduction

 		
 This is NOT a DATA pipeline framework

 		
 Features

 		
 Basic Usage

 		
 Instalation

 		
 Defining Phases

 		
 Running the servers

 		
 Feeding the pipeline with jobs

 		
 in the console

 		
 in python

 		
 Internals Reference

 		
 Servers

 		
 Clients

 		
 Storage Backends

 		
 Utilities

 		
 The command-line client

_static/logo.png

_static/minus.png

_static/icon-flower.png

_static/icon-mushroom.png

_static/simple-diagram.png
Pipeline Manager

_static/up-pressed.png

_static/plus.png

_static/up.png

