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Introduction


Danger

This project is ENTIRELY EXPERIMENTAL at the
moment. Use at your own will or if you want to contribute
to it



CarbonTube is an easy python DSL for describing phases of execution of a
pipeline.

Even more, the phases can be scaled up independently and spread in a
network.


This is NOT a DATA pipeline framework

This framework allows you to describe workers using a simple DSL.
Each worker produces a given job_type.

A pipeline is a sequence of job types that will be coordinate with any
idle workers that announce their availability.

This gives you the advantage of scaling your infrastructure
horizontally and vertically with very little effort.




Features


	Describe phase workers using python classes and get them running within minutes


	Describe pipelines that can juggle with any available phases


	Easily scale phases individually in a pipeline


	Easily scale pipelines onto clusters


	Empower sys-admins to take quick action and increase the number of
phases on demand, be it with new machines, new docker instances or
even one-off spawned processes.


	On-demand live web interface with live pipeline cluster information


	Redis queue and metrics persistence










          

      

      

    

  

    
      
          
            
  
Basic Usage


Instalation

pip install carbontube








Defining Phases

import os
import uuid
import hashlib

from carbontube import Phase, Pipeline
from carbontube.storage import RedisStorageBackend


class GenerateFile(Phase):
    job_type = 'generate-file'

    def execute(self, instructions):
        size = instructions.get('size')
        if not size:
            return

        path = '/tmp/example-{0}.disposable'.format(uuid.uuid4())
        data = '\n'.join([str(uuid.uuid4()) for _ in range(size)])
        open(path, 'wb').write(data)
        return {'file_path': path}


class HashFile(Phase):
    job_type = 'calculate-hash'

    def execute(self, instructions):
        if 'file_path' not in instructions:
            return

        file_path = instructions['file_path']
        if not os.path.exists(file_path):
            msg = "Failed to hash file {0}: does not exist".format(file_path)
            self.logger.warning(msg)
            raise RuntimeError(msg)

        data = open(file_path, 'rb').read()
        return {'hash': hashlib.sha1(data).hexdigest(), 'file_path': instructions['file_path']}


class RemoveFile(Phase):
    job_type = 'delete-file'

    def execute(self, instructions):
        path = instructions.get('file_path')
        if path and os.path.exists(path):
            os.unlink(path)
            return {'deleted_path': path}

        raise RuntimeError('file already deleted: {0}'.format(path))


class Example1(Pipeline):
    name = 'example-one'

    phases = [
        GenerateFile,
        RemoveFile
    ]

    def initialize(self):
        self.backend = RedisStorageBackend(self.name, redis_uri='redis://127.0.0.1:6379')








Running the servers

# run the pipeline
carbontube pipeline examples/simple.py example-one \
    --sub-bind=tcp://127.0.0.1:6000 \
    --job-pull=tcp://127.0.0.1:5050

# then execute the phases separately, they will bind to random
# local tcp ports and announce their address to the pipeline
# subscriber
carbontube phase examples/simple.py generate-file \
    --sub-connect=tcp://127.0.0.1:6000
carbontube phase examples/simple.py calculate-hash \
    --sub-connect=tcp://127.0.0.1:6000
carbontube phase examples/simple.py delete-file \
    --sub-connect=tcp://127.0.0.1:6000








Feeding the pipeline with jobs


in the console

carbontube enqueue tcp://127.0.0.1:5050 example1 "{\"size\": 10}"








in python

from carbontube.clients import PipelineClient
client = PipelineClient("tcp://127.0.0.1:5050")
client.connect()

job = {
    'name': 'example1'
    'instructions': {}
}
ok, payload = client.enqueue_job(job)
if ok:
    print "JOB ENQUEUED!"
else:
    print "PIPELINE'S BUFFER IS BUSY, TRY AGAIN LATER"













          

      

      

    

  

    
      
          
            
  
Internals Reference


Servers


	
class carbontube.servers.Pipeline(name, concurrency=10, backend_class=<class 'carbontube.storage.inmemory.EphemeralStorageBackend'>)

	Pipeline server class

A pipeline must be defined only after you already at least one
Phase.


	
handle_finished_job(job)

	called when a job just finished processing.

When overriding this method make sure to call super() first






	
initialize()

	Initializes the backend.

Subclasses can overload this in order to define their own
backends.






	
on_finished(event)

	called when a job just finished processing. You can override this at will






	
on_started(event)

	called when a job just started processing.

This method is ok to be overriden by subclasses in order to take
action appropriate action.












Clients


	
class carbontube.clients.PipelineClient(address, hwm=10)

	Pipeline client

Has the ability to push jobs to a pipeline server


	
connect()

	connects to the server






	
enqueue_job(data)

	pushes a job to the pipeline.


	Note that the data must be a dictionary with the following

	keys:






	name - the pipeline name


	instructions - a dictionary with instructions for the first phase to execute





	Parameters

	data – the dictionary with the formatted payload.



	Returns

	the payload sent to the server, which contains the job id





EXAMPLE:

>>> from carbontube.clients import PipelineClient

>>> properly_formatted = {
...     "name": "example1",
...     "instructions": {
...          "size": 100",
...     },
... }
>>> client = PipelineClient('tcp://127.0.0.1:5050')
>>> client.connect()
>>> ok, payload_sent = client.enqueue_job(properly_formatted)
















Storage Backends


	
class carbontube.storage.BaseStorageBackend(name, *args, **kw)

	base class for storage backends


	
connect()

	this method is called by the pipeline once it started to listen on
zmq sockets, so this is also an appropriate time to implement
your own connection to a database in a backend subclass pass






	
consume_job_of_type(job_type)

	dequeues a job for the given type. must return None when no job is
ready.

Make sure to requeue this job in case it could not be fed into
an immediate worker.






	
enqueue_job(job)

	adds the job to its appropriate queue name






	
get_next_available_worker_for_type(job_type)

	randomly picks a workers that is currently available






	
initialize()

	backend-specific constructor. This method must be overriden by subclasses
in order to setup database connections and such






	
register_worker(worker)

	register the worker as available. must return a boolean. True if
the worker was successfully registered, False otherwise






	
unregister_worker(worker)

	unregisters the worker completely, removing it from the roster










	
class carbontube.storage.EphemeralStorageBackend(name, *args, **kw)

	in-memory storage backend. It dies with the process and has no
option for persistence whatsoever. Used only for testing purposes.


	
connect()

	this method is called by the pipeline once it started to listen on
zmq sockets, so this is also an appropriate time to implement
your own connection to a database in a backend subclass pass






	
consume_job_of_type(job_type)

	dequeues a job for the given type. must return None when no job is
ready.

Make sure to requeue this job in case it could not be fed into
an immediate worker.






	
enqueue_job(job)

	adds the job to its appropriate queue name






	
get_next_available_worker_for_type(job_type)

	randomly picks a workers that is currently available






	
initialize()

	backend-specific constructor. This method must be overriden by subclasses
in order to setup database connections and such






	
register_worker(worker)

	register the worker as available. must return a boolean. True if
the worker was successfully registered, False otherwise






	
unregister_worker(worker)

	unregisters the worker completely, removing it from the roster










	
class carbontube.storage.RedisStorageBackend(name, *args, **kw)

	Redis Storage Backend


	
connect()

	this method is called by the pipeline once it started to listen on
zmq sockets, so this is also an appropriate time to implement
your own connection to a database in a backend subclass pass






	
enqueue_job(job, state)

	adds the job to its appropriate queue name






	
get_next_available_worker_for_type(job_type)

	randomly picks a workers that is currently available






	
initialize(redis_uri='redis://', worker_availability_timeout=300)

	backend-specific constructor. This method must be overriden by subclasses
in order to setup database connections and such






	
register_worker(worker)

	register the worker as available. must return a boolean. True if
the worker was successfully registered, False otherwise






	
unregister_worker(worker)

	unregisters the worker completely, removing it from the roster










	
class carbontube.storage.RedisJobStorage(name, *args, **kw)

	
	
connect()

	this method is called by the pipeline once it started to listen on
zmq sockets, so this is also an appropriate time to implement
your own connection to a database in a backend subclass pass






	
initialize(redis_uri='redis://', worker_availability_timeout=300)

	backend-specific constructor. This method must be overriden by subclasses
in order to setup database connections and such












Utilities


	
class carbontube.util.CompressedPickle(*args, **kw)

	Serializes to and from zlib compressed pickle


	
pack(item)

	Must receive a python object and return a safe primitive (dict,
list, int, string, etc).






	
unpack(item)

	must receive a string and return a python object










	
carbontube.util.parse_port(address)

	parses the port from a zmq tcp address


	Parameters

	address – the string of address



	Returns

	an int or None










	
carbontube.util.read_internal_file(path)

	reads an internal file, mostly used for loading lua scripts






	
carbontube.util.sanitize_name(name)

	ensures that a job type or pipeline name are safe for storage and handling.


	Parameters

	name – the string



	Returns

	a safe string















          

      

      

    

  

    
      
          
            
  
The command-line client
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